61. Aminoalkyl Tertiary Carbinols and Derived Products. Part VI. ${ }^{1}$ The Stereochemistry of Some 1-Phenyl-1-2'-pyridylprop-1-enes, and of Some 3-(T'ertiary amino)-1-phenyl-1-2'-pyridylprop-1-enes carrying Additional Substituents.

By D. W. Adamson, P. A. Barrett, J. W. Billinghurst, and T. S. G. Jones.

The spectra * of the cis- and trans-isomers of some 1-phenyl-1-2'-pyridyl-prop-l-enes resemble those of the corresponding 3 -(tertiary amino)-compounds (VI) and (I).

3-(Tertiary amino)-1-phenyl-1-2'-pyridylprop-1-enes carrying additional methyl or phenyl substituents have been prepared and separated into their geometrical isomers, and the latter have been assigned particular configurations. The spectra of the parent types (I) and (VI) are unaffected by the introduction of meta- or 3 -substituents but are radically altered by ortho- or 2 -substituents; the alterations are interpreted in terms of additional steric hindrance.

In Part V^{1} we described the separation of a series of 3-(tertiary amino)-1-phenyl-1-2'-pyridylprop-l-enes into their trans- and cis-isomers (I) and (VI). The isomers were separated by displacement ion-exchange chromatography, the trans-isomer invariably being eluted first from the column. They differed significantly in their spectra,* the cis-isomers resembling styrene in giving a single peak in the neighbourhood of $250 \mathrm{~m} \mu$, and the trans-isomers resembling 2 -vinylpyridine in giving two maxima, at ca. 240 and $280 \mathrm{~m} \mu$.

(XI): $\mathbf{R}^{\mathbf{2}}=\mathbf{M e}, \mathbf{R}^{\mathbf{3}}=\mathrm{H}$
(XII): $\mathbf{R}^{2}, \mathrm{R}^{3}=\mathrm{H}$
(XIII): $\mathbf{R}^{\mathbf{2}}, \mathbf{R}^{\mathbf{3}}=\mathbf{M e}$

(cis)

From the spectra it was deduced that in the trans-isomer the pyridyl group is coplanar with the propene system to a degree sufficient to permit conjugation, and hence ultraviolet

[^0]absorption of 2 -vinylpyridine type, the phenyl group being forced out of the plane of the double bond by the steric effect of the aminomethyl group. A similar effect in the opposite sense determines the disposition of the cis-isomers.

We suggested that it was probably the methylene moiety of the aminomethyl group which effected this hindering and this has now been confirmed by the demonstration of similar spectral differences between isomers in which the tertiary amino-group is absent. The alcohols (XI; $\mathrm{R}^{1}=\mathrm{H}$) and (XI; $\mathrm{R}^{1}=\mathrm{Cl}$) gave, on dehydration, propenes which were separated by chromatography on alumina, or by ion-exchange chromatography, each into two isomers, one of each pair (XIV; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}$ and Cl) showing (Fig. 1) the 2 -vinyl-pyridine-like spectrum characteristic of the trans-isomers (I), and the other (XV; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}$ and Cl) showing the styrene-like spectrum characteristic of the corresponding cis-isomers

Fig. 1. trans-1-p-Chlorophenyl-1-2'-pyridylprop-1-ene:

- in 0.1 m -ethanolic NaOH ; --- in $0 \cdot 1 \mathrm{~m}-$ ethanolic HCl .
cis-1-p-Chlorophenyl-1-2'-pyridyl-prop-1-ene:
... in 0.1 m -ethanolic NaOH ;
.-. in $0.1 \mathrm{~m}-$ ethanolic HCl ; o o o in $5 \cdot 5 \mathrm{M}-\mathrm{aq}$. HCl .

(VI). Both isomers show, in acid solution, the band at ca. $300 \mathrm{~m} \mu$ characteristic of the transisomer (I) (ref. 1, Fig. 2, curve --) and of 2-vinylpyridine, but for (XV) it is much less intense than for (XIV). By analogy with the tertiary amino-isomers (I) and (VI), compounds (XIV) are designated trans and (XV) cis. In contrast with the tertiary amino-isomers, but in accordance with the $\mathrm{p} K_{a}$ values of their pyridyl nitrogen atoms, ${ }^{2}$ the cis-propenes (XV) are eluted before the trans-propenes (XIV) in displacement ion-exchange chromatography. The corresponding phenylpyridylethylenes (XVI; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}$ and Cl) prepared by dehydration of the alcohols (XII; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}$ and Cl) were shown to be spectroscopically homogeneous by submission to ion-exchange or alumina chromatography. Their spectra (Fig. 2) were intermediate between those of the trans-isomers (I) and (XIV) and the cis-

(XXII)
isomers (VI) and (XV) in that they show (a) peaks at 230 and $235 \mathrm{~m} \mu$, (b) shoulders at 245 and $250 \mathrm{~m} \mu$, (c) a shelf at $280 \mathrm{~m} \mu$, and (d) a new peak at $300 \mathrm{~m} \mu$ in acid solution.

[^1]We now describe geometrical isomers (II-V, VII-X) in which additional substituents are introduced into the parent types (I) and (VI) and assign them geometrical configurations, on the basis of their spectra where these retain the sharp distinction of those of the parent types. In those cases where substitution so alters the spectra as to make them inconclusive, two other criteria are employed, (i) the order of elution on ion-exchange chromatography, and (ii) the yield of the acetylpyrrocoline obtained on cyclisation. The cis-isomer (VI; $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{NR}^{2} \mathrm{R}^{3}=\mathrm{N}<\left[\mathrm{CH}_{2}\right]_{4}$) was shown ${ }^{1}$ to cyclise on treatment with acetic anhydride to the acetylpyrrocoline (XXII; $\mathrm{R}^{\mathbf{1}}=\mathrm{Cl}, \mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{Ac}$) under conditions which gave none from the trans-isomer (I), and this was offered as additional evidence of the correctness of the configurations assigned to these isomers. In Part VII (following paper) it is shown that cyclisation to the corresponding pyrrocoline (XXII) is general for all the cis-alkenylamines (VII-X) which have been examined. The use of different cyclisation conditions has greatly increased the yield of pyrrocoline over that previously reported, and under these conditions the corresponding trans-isomers

Fig. 2.
Fig. 3.

Fig. 2. 1-p-Chlorophenyl-1-2'-pyridylethylene: ---in EtOH ; in $5 \mathrm{~m}-a q . \mathrm{HCl}$. 1-Phenyl-1-2'-pyridylethylene: -in $\mathrm{EtOH} ; \cdot$. in $5 \mathrm{~m}-a q . \mathrm{HCl}$.
Fig. 3. 2-Methyl-1-phenyl-1-2'-pyridyl-3-pyrrolidinoprop-1-ene: (a) trans, -in EtOH ; - - in $5 \mathrm{M}-a q$. HCl ; (b) cis, -- in $\mathrm{EtOH}, .$. in $5 \mathrm{M}-a q . \mathrm{HCl}$.
(II-V) also give pyrrocoline. Where the configuration of the isomers is defined by their spectra the yield of pyrrocoline obtained from the trans- is, however, always lower than that from the cis-isomer under the same conditions. When the spectra are not diagnostic, we therefore assign the cis-configuration to that isomer which gives the higher yield of pyrrocoline. The cyclisation experiments, the results of which are assumed here, are described in the following paper.

2-Methyl Substituents.-Four 2-methyl-substituted alcohols (Table 2) (XVIIIa, b, c, and d) have been prepared and dehydrated to mixtures of the corresponding alkenylamines (II) and (VII) (Table 4), from which, in all cases, each pure isomer has been isolated. Separation was best effected by fractional crystallisation of the oxalates, the differential solubility being high in all cases. The isomers (II a), (VII a), ($\mathrm{II} c$), and (VIIc) were further purified by crystallisation as their solid bases. The depression of melting point shown by these pairs of isomers, together with the fact that in each case the higher-melting base was derived from the lower-melting, more soluble, oxalate, established their purity. Separation by base-exchange chromatography, which was used ${ }^{\mathbf{1}}$ for separation of the parent isomers of types (I) and (VI), is of less value here because, as discussed below, the
TABLE 1. Aryl 2-(tertiary amino)ethyl ketone hydrochlorides $\mathrm{R}^{1} \cdot \mathrm{CO}^{-} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NR}^{2} \mathrm{R}^{3}, \mathrm{HCl}$.

om ethanol-ethyl acetate. With decomp. except those marked *. ${ }^{\circ}$ Analytical samples were dried at 100° in vacuo
TABLE 2. 1-Aryl-1-2'-pyridylalkan-1-ols and 3-(tertiary amino)-1-aryl-1-2'-pyridylalkan-1-ols. Found (\%)

C	H	N	Cl
67.9	$5 \cdot 7$	$5 \cdot 7$	14.3
$79 \cdot 3$	$7 \cdot 5$	-	
$68 \cdot 9$	$6 \cdot 1$	-	13.6
$77 \cdot 4$	8.4	$9 \cdot 0$	
$69 \cdot 7$	$7 \cdot 3$	$8 \cdot 1$	10.3
$77 \cdot 0$	$8 \cdot 1$	$9 \cdot 5$	-
$69 \cdot 0$	$7 \cdot 0$	8.5	10.7
$80 \cdot 7$	$7 \cdot 5$	$7 \cdot 5$	
$73 \cdot 4$	6.4	$7 \cdot 1$	$9 \cdot 0$
$77 \cdot 4$	$8 \cdot 4$	9.0	-
$77 \cdot 0$	$8 \cdot 1$	$9 \cdot 5$	
$69 \cdot 0$	7-0	8.5	$10 \cdot 7$
$80 \cdot 7$	$7{ }^{\prime \prime} 5$	7.75	
$77 \cdot 0$	$8 \cdot 1$	$9 \cdot 5$	
$69 \cdot 0$	$7 \cdot 0$	8.5	$10 \cdot 7$

* Diastereoisomers (see text).

a Solvent light petroleum (b. p. $40-60^{\circ}$). Others from light petroleum (b. p. $60-80^{\circ}$). * Diastereoisomers (see text).

> 北
a Solvent light petroleum (b. p. $40-60^{\circ}$). Others from light petroleum (b. p. $60-80^{\circ}$). * Diastereoisomers (see text).

"
a Solvent light petroleum (b. p. $40-60^{\circ}$). Others from light petroleum (b. p. $60-80^{\circ}$). * Diastereoisomers (see text).

a Solvent light petroleum (b. p. $40-60^{\circ}$). Others from light petroleum (b. p. $60-80^{\circ}$). * Diastereoisomers (see text).

NR ${ }^{2} \mathrm{R}^{3}$	Yield(\%)	Derivative	M. p. ${ }^{\text {b }}$	Solvent for recrystn.	Formula	Found (\%)		
						C	H	N
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	53	Base	106-107 ${ }^{\circ}$	EtOH	$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{ON}_{2}$	76.7	8.0	9.
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$		Oxalate	181-182	MeOH	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2}$	$65 \cdot 1$	6.7	
	56	Base	54-55		$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ON}_{2}$	77.2	8.2	9.
		Oxalate	155-156	EtOH	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2}$	$65 \cdot 4$	6.5	
NMe_{2}	60	Base	86-87	${ }^{\mathrm{EtOH}}$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ON}_{2}$	75.5	8.0	10.
		Oxalate	163-164	MeOH	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5}{ }^{\text {N}}$	63.3	6.5	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	80	Base	119-120	$\stackrel{\mathrm{EtOH}}{\text { EtOH-EtOAc }}$		77.0 65.3	7.8 6.8	
$\mathrm{N}<\mathrm{C}_{5} \mathrm{H}_{10}$	54	Oxalate Base	148-119	EtOH-EtOAc	$\mathrm{C}_{20} \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{28} \mathrm{O}$	$65 \cdot 3$ 77.7	6.8 8.3	
		Oxalate	146-147	MeOH	$\mathrm{C}_{22}^{20} \mathrm{H}_{28} \mathrm{C}^{26}$	$65 \cdot 6$	6.9	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	69	Base	111-112	EtOH	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$	77.2	8.5	$9 \cdot 3$
		Oxalate	175--176	MeOH	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}$	65.9	6.8	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	58	Base	107-108	EtOH	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{OHN}_{2}$	77.3	8.4	8.
		Oxalate ${ }^{\text {c }}$	196	MeOH	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{~N}_{2}$	62.2	6.6	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	67	Base Oxalate	104-105	${ }_{\text {EtOH }}$	$\mathrm{C}_{2} \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{H}_{28} \mathrm{ON}_{2} \mathrm{~N}_{2}$	76.9 66.0	8.4 6.8	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	65	Base	112-113	EtOH	$\mathrm{C}_{22} \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}$	${ }^{66 \cdot 4}$	6.8 8.4	
		Oxalate	147-149	EtOH	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{2}$	$65 \cdot 8$	6.9	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	74	Base	83-84	EtOH	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ON}_{2}$	77.4	8.5	8
		Oxalate	146-147	EtOH-EtOAc	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}_{2}$	66.8	7.1	
$\mathrm{N}<\mathrm{C}_{4} \mathrm{H}_{8}$	80	Base	$120-121$ $127-128$	$\xrightarrow[\mathrm{CHCl}_{3} \mathrm{EtOH}]{\text { EtOAc }}$	${ }_{\text {C24 }}^{\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{H}_{30} \mathrm{ON}_{5} \mathrm{~N}_{2}}$	78.1 67.1	8.8 7.6	7
		Oxalate	127-128	$\mathrm{CHCl}_{3}-\mathrm{EtOAc}$	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~N}_{2}$	67.1	7.6	

Table 4. 1-Aryl-1-2'-pyridylalk-1-ene and 3-(tertiary amino)-1-aryl-1-2'-pyridylalk-1-ene isomers (cf. Table 4a).

Compound	$\mathrm{R}^{\mathbf{1}}$	$\mathrm{R}^{2} \mathrm{R}^{\mathbf{3}}$	Isomer	Derivative	$\begin{aligned} & \text { M. p. or } \\ & \text { b. p./mm. } \end{aligned}$	Base ${ }^{\text {d }}$				Salt ${ }^{e}$				Cation f			
						λ		$10^{-3} \varepsilon$		\checkmark		$10^{-3} \varepsilon$		λ		$10^{-3} \varepsilon$	
XVI a	H	H, H	-	Base	$120-122^{\circ} / 0 \cdot 5$	232	275	$9 \cdot 8$	$4 \cdot 9$	-	-	-	-	230	300	$13 \cdot 8$	$5 \cdot 9$
				Hydrochloride	186-187 ${ }^{\text {a }}$	-	-		-	-	-	-	-			-	
XVIb	Cl	H, H,	-	Hydrochloride	192-193 ${ }^{\text {b }}$	232	-	$16 \cdot 2$	-	-	-	-	-	237	297	$15 \cdot 6$	$5 \cdot 4$
XIVa	H	H, Me	trans	Hydrochloride	$138{ }^{\text {a }}$	242	286	$12 \cdot 6$	$5 \cdot 9$	-	-	-	-	242	303	$11 \cdot 3$	$6 \cdot 6$
XVa		H	cis	Base	110/0.5	244	-	$13 \cdot 7$	-	-	-	-	-	241	304	$14 \cdot 9$	$3 \cdot{ }^{\circ}$
XIVb	Cl	,	trans	Hydrochloride	197-199	240	286	$17 \cdot 9$	$6 \cdot 4$	-	-	-	-	240	307	$14 \cdot 6$	$9.3{ }^{\circ}$
XVb	"		cis	Base	150-152/0.5	253	-	$16 \cdot 0$	-	-	-	-	-	248	300	$18 \cdot 3$	$3 \cdot 49$
XVII a	H	Me, Me		Base	126-128/0.5	241	270	11.2	$5 \cdot 0$	-	-	-	-	234	305	$10 \cdot 7$	$4 \cdot 8{ }^{\prime}$
XVII b	Cl		-	Base	150-152/0.5	245	-	$14 \cdot 1$	-	-	-	-	-	244	310	$15 \cdot 0$	$5 \cdot 7$
II a	H	$<\left[\mathrm{CH}_{2}\right]_{5}$	trans	Base	85-86	230	265	$10 \cdot 1$	$5 \cdot 8$	225	270	$10 \cdot 7$	$5 \cdot 6$	-	-	-	-
	"	,"	trans	Oxalate	175-176		-	-	-	-	-	-	-	-	-	-	-
VII a	"	,	cis	Base	100-102	240	270	$11 \cdot 2$	$4 \cdot 7$	225	268	$20 \cdot 0$	7.9	-	-	-	-
'		,	cis	Oxalate	125	-	-	-	-	-	-	-	-	-	-	-	-
II b	$\stackrel{\mathrm{Cl}}{ }$	"	trans	Oxalate	201-202	-	-	-	-	240	283	13.0	$5 \cdot 8$	-	-	-	-
VIIb			cis	Oxalate	75-77	-	-	-	-	232	-	$13 \cdot 4$	-	-	-	-	-
II c	H	$<\left[\mathrm{CH}_{2}\right]_{4}$	trans	Base	55	235	265	$9 \cdot 8$	$5 \cdot 8$	-	-	-	-	230	290	$9 \cdot 0$	$4 \cdot 8$
	"	"	trans	Oxalate	158-159	-	-	-	-	-	-	-	-	-	-	5	-
VIIc	"	"	cis	Base	69-70	237	270	$11 \cdot 1$	$6 \cdot 0$	-	-	-	-	235	290	$10 \cdot 5$	$4 \cdot 3$
IId	Cl	"	trans	Oxalate	216	238	-	$10 \cdot 2$	-	231	-	$14 \cdot 0$	-	232	290	$14 \cdot 1$	$5 \cdot 7$
VIId		' ${ }^{\prime}$	cis	Oxalate	134-135	246	-	$14 \cdot 0$	-	235	280	$15 \cdot 5$	$7 \cdot 2$	242	290	$15 \cdot 6$	$7 \cdot 6$
III a	H	$<\left[\mathrm{CH}_{2}\right]_{5}$	-	Base	91-92	270	-	$10 \cdot 0$	-	-	-	-	-	244	-	$13 \cdot 0$	-
or VIIIa																	
III b	Cl	$<\left[\mathrm{CH}_{2}\right]_{4}$	trans	Base	104-105	231	259	$15 \cdot 6$	$11 \cdot 1$	-	-	-	-	240	295	$14 \cdot 7$	$9 \cdot 1$
	"	,"	trans	Oxalate	151-152	240			-	-	-	-	-	,	-	-	-
VIII b	"	,	cis	Base	110	240	280	$14 \cdot 8$	$11 \cdot 9$	-	-	-	-	243	310	$17 \cdot 0$	$4 \cdot 3$
	'		cis	Oxalate	147-148	-	-	-	-	-	-	-	-	-	-	-	-
IVa	H	$<\left[\mathrm{CH}_{2}\right]_{5}$	trans	Base	-	240	282	$13 \cdot 0$	$6 \cdot 0$	-	-	-	-	-	-	-	-
IX a	"		cis	Base	-	248	-	$11 \cdot 2$	-	-	-	-	-	-	282	12	6
IVb	"	$<\left[\mathrm{CH}_{2}\right]_{4}$	trans	Base	-	-	-	-	-	-	-	-	-	240	282	$12 \cdot 1$	$6 \cdot 2$
IXb	$\ddot{\sim}$	"	cis	Base	-	-	-	-	-	233	962	16	7	245	-	$12 \cdot 5$	-
IVc	Cl	,	trans	Base	150-160	-	-	-	-	233	262	$16 \cdot 0$	$7 \cdot 4$	-	-	-	-
	"	,	trans	Oxalate	159-160	-	-	-	-	245	-	16.0	-	-	-	-	-
IX C	'		cis	Base	200-204/0.3	-	-	-	-	245	-	$16 \cdot 0$	-	--	-	-	-
$\mathrm{X} a$	H	$<\left[\mathrm{CH}_{2}\right]_{5}$	cis	Base	77-79	253	-	17.9	-	--	-	-	-	255	291	$14 \cdot 0$	$3 \cdot 84$
XXXa	"	$<\left[\mathrm{CH}_{2}\right]_{4}$	trans	Oxalate	158-160	250		$13 \cdot 5$	-	-	-	-	-	260	-	$14 \cdot 0$	-
XXXIa		[cis	Oxalate	152	242	255	$11 \cdot 2$	11.2	-	-	-	-	250	-	$10 \cdot 0$	-
XXXb	Cl	"	trans	Oxalate	140-141	260	-	$15 \cdot 5$	-	-	-	-	-	217	265	$14 \cdot 0$	$18 \cdot 0$
XXXIb	"	,	cis	Oxalate	175-176	250	-	11.9	--		-	-	-	217	265	$14 \cdot 0$	$12 \cdot 0$

ultraviolet spectra of these isomers are so nearly identical as to be useless for controlling the progress of the separation. The method was used for examples (a) and (c) in which both isomeric bases were solid, and determination of mixed m. p.s of the fractions gave a satisfactory, if tedious, control of the separation. The isomer giving the sparingly soluble oxalate was eluted first on ion-exchange chromatography and that giving the more soluble oxalate gave a substantially higher yield of pyrrocoline. The trans-configuration (II) is therefore assigned to the former and the cis-configuration (VII) to the latter isomer in each case. The isomers (II) and (VII) differ from the parent types (I) and (VI) in that their spectra are almost identical (Fig. 3) and take the form of a rather broad curve with a single peak at ca. $240 \mathrm{~m} \mu$, showing a distinct shoulder at $270 \mathrm{~m} \mu$. In acid solution, both isomers give a peak at $290 \mathrm{~m} \mu$. The form of the curves, being a hybrid of those of styrene and 2 -vinylpyridine, and their similarity, are readily interpreted in steric terms. The presence of the 2-methyl group in (II) and (VII) in addition to the aminomethyl group introduces a steric symmetry lacking in (I) and (VI). It is to be expected that in each isomer both aryl groups, being equally hindered, have an equal opportunity to attain the necessary degree of co-planarity and will contribute equally to the spectrum.

Table $4 a$.

		Found (\%)				Required (\%)			
Compound	Constitution	C	H	N	Cl	C	H	N	$\overline{\mathrm{C}}$
XVIa	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}$	$85 \cdot 8$	$5 \cdot 6$	$7 \cdot 7$	-	$86 \cdot 2$	6-1	$7 \cdot 7$	-
	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}, \mathrm{HCl}$	$71 \cdot 4$	$5 \cdot 6$	$6 \cdot 1$	-	71.7	$5 \cdot 5$	$6 \cdot 4$	-
XVIb	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NCl}, \mathrm{HCl}$	$62 \cdot 3$	$4 \cdot 4$	$5 \cdot 6$	$27 \cdot 8$	61.9	4.4	$5 \cdot 6$	$28 \cdot 2$
XIVa	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}, \mathrm{HCl}$	$72 \cdot 0$	$5 \cdot 8$	$6 \cdot 0$	$15 \cdot 6$	$72 \cdot 6$	$6 \cdot 0$	$6 \cdot 0$	$15 \cdot 3$
XVa	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}$	$86 \cdot 0$	$6 \cdot 6$	$7 \cdot 0$	-	86.2	$6 \cdot 7$	$7 \cdot 2$	-
XIVb	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NCl}, \mathrm{HCl}$	$63 \cdot 7$	$4 \cdot 9$	-	26.9	$63 \cdot 2$	$4 \cdot 9$	-	26.7
XVb	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NCl}$	$72 \cdot 6$	$5 \cdot 4$	$5 \cdot 6$	$15 \cdot 6$	$73 \cdot 2$	$5 \cdot 2$	$6 \cdot 1$	$15 \cdot 5$
XVII a	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}$	85.9	$7 \cdot 2$	$6 \cdot 6$	-	$86 \cdot 1$	$7 \cdot 2$	$6 \cdot 7$	-
XVIIb	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NCl}$	$73 \cdot 0$	$5 \cdot 8$	$5 \cdot 7$	$14 \cdot 5$	$73 \cdot 9$	$5 \cdot 7$	$5 \cdot 7$	$14 \cdot 6$
II a	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$	81.8	$8 \cdot 0$	$9 \cdot 9$	-	$82 \cdot 2$	$8 \cdot 2$	$9 \cdot 6$	-
	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$69 \cdot 0$	$7 \cdot 0$	$7 \cdot 2$	-	$69 \cdot 1$	$6 \cdot 8$	$7 \cdot 3$	-
VII a	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$	$82 \cdot 1$	8-1	$9 \cdot 4$	-	$82 \cdot 2$	$8 \cdot 2$	$9 \cdot 6$	-
	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$68 \cdot 8$	$7 \cdot 1$	$7 \cdot 3$	-	$69 \cdot 1$	$6 \cdot 8$	$7 \cdot 3$	-
IIb	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$63 \cdot 2$	$6 \cdot 0$	$6 \cdot 5$	$8 \cdot 5$	$63 \cdot 4$	$6 \cdot 0$	$6 \cdot 7$	$8 \cdot 5$
VIIb	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}_{1} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	62.9	$6 \cdot 2$	$10 \cdot 2$	$8 \cdot 5$	63.4	$6 \cdot 0$	$6 \cdot 7$	$8 \cdot 5$
II c	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$	81.5	$7 \cdot 4$	$10 \cdot 2$	-	$82 \cdot 0$	$7 \cdot 9$	$10 \cdot 1$	-
VII	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$68 \cdot 3$	6.4	$7 \cdot 5$	-	$68 \cdot 5$	$6 \cdot 5$	$7 \cdot 6$	-
VIIc	$\mathrm{C}_{19} \mathrm{~N}_{22} \mathrm{~N}_{2}$	$81 \cdot 4$	$7 \cdot 7$	$11 \cdot 1$	-	$82 \cdot 0$	$7 \cdot 9$	$10 \cdot 1$	-
IId	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$62 \cdot 6$	$5 \cdot 7$	$7 \cdot 0$	$8 \cdot 9$	$62 \cdot 6$	$5 \cdot 7$	$7 \cdot 0$	$8 \cdot 8$
VIId	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	62•2	$5 \cdot 7$	$6 \cdot 9$	$9 \cdot 0$	$62 \cdot 6$	$5 \cdot 7$	$7 \cdot 0$	$8 \cdot 8$
III a	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2}$	84-7	7-3	$7 \cdot 7$	-	84•7	$7 \cdot 3$	$7 \cdot 9$	-
or VIIIa									
III b	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}$	$76 \cdot 5$	$5 \cdot 9$	$7 \cdot 6$	$9 \cdot 6$	$76 \cdot 9$	$6 \cdot 1$	$7 \cdot 5$	9.5
	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$67 \cdot 5$	$5 \cdot 5$	6•1	$7 \cdot 2$	$67 \cdot 2$	$5 \cdot 4$	$6 \cdot 0$	$7 \cdot 6$
VIII b	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}$	$76 \cdot 9$	$6 \cdot 2$	$7 \cdot 5$	$9 \cdot 5$	$76 \cdot 9$	$6 \cdot 1$	$7 \cdot 5$	$9 \cdot 5$
	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$67 \cdot 3$	$5 \cdot 4$	$6 \cdot 2$	$7 \cdot 6$	$67 \cdot 2$	$5 \cdot 4$	$6 \cdot 0$	$7 \cdot 6$
IVa	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$	81.9	$8 \cdot 1$	$9 \cdot 4$	-	$82 \cdot 2$	$8 \cdot 2$	$9 \cdot 6$	-
IXa	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$	$82 \cdot 0$	$7 \cdot 6$	$9 \cdot 3$	-	$82 \cdot 2$	$8 \cdot 2$	$9 \cdot 6$	-
IVb	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$	$81 \cdot 7$	$7 \cdot 9$	$10 \cdot 0$	-	$82 \cdot 0$	$7 \cdot 9$	$10 \cdot 1$	-
IXb	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}$	$81 \cdot 9$	$7 \cdot 7$	$10 \cdot 2$	11	$82 \cdot 0$	$7 \cdot 9$	$10 \cdot 1$	11
IV c	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}$	$73 \cdot 1$	$6 \cdot 5$	$8 \cdot 7$	$11 \cdot 5$	$73 \cdot 0$	6•7	$9 \cdot 0$	11.4
	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}, 1 \frac{1}{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	58.7	5.4 6.7	6.2	$7 \cdot 9$ $11 \cdot 5$	$59 \cdot 0$	$5 \cdot 4$	6.3	7.9 11.4
IX c	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}$	$72 \cdot 5$ $84 \cdot 8$	6.7	$8 \cdot 8$	11.5	$73 \cdot 0$	6•7	$9 \cdot 0$	11.4
$\mathrm{X} a$ $\mathbf{X X a}$	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2}$	$84 \cdot 8$	$7 \cdot 4$	$7 \cdot 9$	-	$84 \cdot 7$	$7 \cdot 3$	$7 \cdot 9$	-
XXX ${ }_{\text {XX }}$	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	68.0	$6 \cdot 4$	$7 \cdot 7$	-	$68 \cdot 5$	$6 \cdot 5$	$7 \cdot 6$	-
XXXIa	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$68 \cdot 2$	$6 \cdot 5$	$7 \cdot 6$	-	$68 \cdot 5$	$6 \cdot 5$	$7 \cdot 6$	- 8
XXXb	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}_{1} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$62 \cdot 8$	6-1	6.4	$8 \cdot 5$	$62 \cdot 6$	5•7	$7 \cdot 0$	$8 \cdot 8$
XXXIb	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$62 \cdot 5$	$6 \cdot 0$	$6 \cdot 6$	$8 \cdot 6$	$62 \cdot 6$	$5 \cdot 7$	$7 \cdot 0$	$8 \cdot 8$

The spectra of the non-aminated isobutenes (XVIr; $\mathrm{R}^{1}=\mathrm{H}$ and Cl) are similar to those of the isomers (II) and (VII), and consist of single bands with peaks at 242 and $246 \mathrm{~m} \mu$ respectively and only slight indication of submerged peaks at $270 \mathrm{~m} \mu$. In acid solution they show well-defined peaks at $320 \mathrm{~m} \mu$.

2-Phenyl Substituents.-Two 2-phenyl-substituted alcohols (Table 2) (XIXa and b)
Table 5. 3-(Tertiary amino)-1-aryl-1-2'-pyridylprop-1-enes (XXV), (XXVII), (XXVI), and (XXVIII) (cf. Table 5a).

have been prepared and dehydrated to mixtures of the alkenylamines (III) and (VIII) (Table 4). The alcohol (XIXb) gave on dehydration a mixture of alkenylamines from which two pure solid isomers (IIIb) and (VIIIb) were isolated by ion-exchange chromatography, controlled by the m. p.s and mixed m. p.s of the fractions. The isomers were also separated, less satisfactorily, by fractional crystallisation of the oxalates. The yield of pyrrocoline from the isomer which was eluted first was lower than from that eluted second. The former is therefore assigned the trans- and the latter the cis-configuration. The spectra of the diphenylpropenes (IIIb) and (VIIIb) are similar and, except for some extension towards the red, resemble the trans-alkenylamine type: both show the characteristic absorption at $300-320 \mathrm{~m} \mu$ in acid solution, the trans-isomer absorbing the more intensely.

The alcohol (XIXa) gave, on dehydration, a semi-solid mixture from which one solid isomer (III a) or (VIII a) has been isolated by crystallisation and by base-exchange chromatography. The later fractions of the column gave oil which presumably consisted substantially of the second isomer. However, as both the solid and the liquid fractions gave approximately equal yields of pyrrocoline, there are insufficient grounds for assigning configurations.

3-Methyl Substituents.-Three 3-methyl-substituted alcohols [Table 2; (XXa), (XXb), and (XXc)] have been prepared and dehydrated to mixtures, each of which was separated by base-exchange chromatography into the trans- and the cis-alkenylamines (IV) and (IX). As expected, their absorption spectra resembled those of the unsubstituted types (I) and (VI) and served to control the separations.

Table $5 a$.

		Found (\%)			Required (\%)		
Compound	Formula	C	H	N	C	H	N
XXVa	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.3	6.3	7.6	68.5	6.5	$7 \cdot 6$
XXVIIa	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.1	$6 \cdot 2$	$7 \cdot 4$	68.5	6.5	7.6
XXVIa	$\mathrm{C}_{21} \mathrm{H}_{24}{ }^{4} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.8	6.7	$7 \cdot 8$	68.5	6.5	7.6
xXVIIIa	$\mathrm{C}_{21} \mathrm{H}_{24}{ }^{4} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.5	6.4	$7 \cdot 6$	68.5	6.5	$7 \cdot 6$
XXVIb	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2}$	66.9	6.2	8.2	66.7	$6 \cdot 4$	8.2
xXVIIIb	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2}$	66.8	6.4	8.2	66.7	$6 \cdot 4$	8.2
XXVIc	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$			$9 \cdot 9$			10.1
"	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.5	6.2	7.6	68.5	6.5	7.6
"	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}$	-		$11.3{ }^{\text {a }}$	-	-	$11.3{ }^{\text {a }}$
	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Br}$			$22.0{ }^{\text {a }}$			$22.3{ }^{\text {a }}$
XXVIIIc	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.2	${ }_{6}^{6.3}$	7.4	68.5	6.5	7.6
${ }_{\text {xXVId }}$	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	69.2	6.8	7.2	69.1	6.8	7.3
XXVIIId	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	$69 \cdot 2$	6.8	7.5	69.1	6.8	7.3
${ }_{\text {XXVVb }}^{\text {XXVIb }}$	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	69.1	6.8	$7 \cdot 3$	69.1	6.8	7.3
XXVIIb	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}^{2}$	68.8 69.2	7.0 6.8	7.1	${ }_{69.1}^{69.1}$	6.8 6.8	7.3
XXV XXVII	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	69.2	6.8	$7 \cdot 3$	69.1	6.8	7.3
XXVIIc	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.6	6.7	7.1	69.1	6.8	7.3
XXVIe XXVIIIe	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	69.0	7.0	7.3	69.1	6.8	7.3 9.6
xxviile	${ }^{\mathrm{C}_{20} \mathrm{C}_{2} \mathrm{H}_{24} \mathrm{H}_{24} \mathrm{~N}_{2}}$	$82 \cdot 2$ 68.9	8.2 6.9	$9 \cdot 6$ 7.3	$82 \cdot 2$ 69.1	8.2 6.8	$9 \cdot 6$ 7.3
XX'Vif	$\mathrm{C}_{22} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$	68.8	6.8	$7 \cdot 2$	69.1	6.8	7.3
XXVIg	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{C}_{4}{ }_{4} \mathrm{~N}_{2}$	69.6	6.9	6.9	69.7	$7 \cdot 1$	7.1
XXVIIIg	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2}$	69.8	6.9	$6 \cdot 8$	69.7	7.1	7.1
XXVI h	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$	69.7	7.3	$6 \cdot 6$	$70 \cdot 2$	7.3	$6 \cdot 8$
XXVIII	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$	$70 \cdot 2$	6.9	6.7	$70 \cdot 2$	$7 \cdot 3$	$6 \cdot 8$

3-Phenyl Substituents.-The 3-phenyl alcohol (XXIa) (Table 2) showed unusual lability to sulphuric acid, perhaps associated with the fact that the compound is a substituted benzylamine, and did not survive dehydration under any but the mildest conditions. It was perhaps a consequence of this that the derived alkenylamine ($\mathrm{X} a$) (Table 4) was found on ion-exchange chromatography to contain only cis-isomer. The trans-isomer has not been prepared. The configuration of the cis-isomer is defined by its styrene-like
spectrum and confirmed by the high yield of $1: 3$-diphenylpyrrocoline obtained on ring closure.

Methyl Substituents in the Phenyl Group.-Three alcohols [Table 3; (XXIIIa), (XXIIIb), and (XXIII c)] containing an o-methyl substituent in the phenyl group have been prepared and on dehydration gave mixtures which were separated by base-exchange chromatography into the isomeric alkenylamines (XXV) and (XXVII) (Table 5). In each case the spectrum (Fig. 4) of the trans-isomer (XXV) is of normal vinylpyridine type. The spectrum of the cis-isomer (XXVII) shows little trace of the styryl type of absorption, but only a broad shelf $(\varepsilon \sim 5000)$ in the $260-280 \mathrm{~m} \mu$ region. In this isomer, in addition to the normal hindering of the pyridyl group by the aminomethylene group, the hindering effect of the o-methyl group is so considerable that the phenyl group too is prevented from conjugating efficiently with the double bond. The spectrum is therefore a hybrid one though closer to the vinylpyridine than to the styrene type. In acid solution, a typical peak at $300 \mathrm{~m} \mu$ is given by the trans-isomer and a lower, broader shelf by the cis-form.

The configurations of the isomers to which the spectra are referred are confirmed by the

Fig. 4. 1-2'-Pyridyl-3-pyrrolidino-1-o-tolylprop-1-ene oxalate: (a) trans, in $0 \cdot 1 \mathrm{~m}$-ethanolic NaOH , -- in $5 \mathrm{~m}-a q . \mathrm{HCl}$; (b) cis, . . . in $0 \cdot 1 \mathrm{~m}$-ethanolic NaOH, - . in $5 \mathrm{~m}-\mathrm{aq} . \mathrm{HCl}$.
Fig. 5. 1-(3-Methyl-2-pyridyl)-1-phenyl-3-pyrrolidinoprop-1-ene oxalate: (a) trans, . . . in 0.1methanolic NaOH , o o o in $5 \mathrm{~m}-a q . \mathrm{HCl}$; (b) cis, -- in $0 \cdot 1 \mathrm{~m}-$ ethanolic $\mathrm{NaOH},--$ in $5 \mathrm{~m}-a q . \mathrm{HCl}$.
order of elution and by cyclisation experiments which were unusually conclusive in that the $c i s$-isomer gave a high yield of pyrrocoline and the trans-isomer gave none.

Several alcohols [Table 3; (XXIV)] carrying m - or p-alkyl substituents in the phenyl group have been prepared and dehydrated to the corresponding alkenylamines, and the isomers (Table 5) separated by ion-exchange chromatography. As expected, the isomers (XXVI) and (XXVIII) showed ultraviolet absorption spectra resembling those of the parent types (I) and (VI).

Picolylalkenylamines.-Two (3-picolyl)carbinols [Table 2; (XXIXa) and (XXIXb) have been prepared and dehydrated to mixtures, each of which was separated by fractional crystallisation of the oxalates into the isomeric alkenylamines (XXX) and (XXXI) (Table 4). The pattern of their spectra (Fig. 5) is the reverse of that discussed above for the o-tolyl isomers (XXV) and (XXVII). The spectrum of the cis-isomer is of normal styrene type, and that of the trans-isomer is of modified styrene type, taking the form of a broad, flattened peak extending from 240 to $260 \mathrm{~m} \mu$, but showing traces of the vinylpyridine absorption-a peak at $240 \mathrm{~m} \mu$ and a shoulder at $280 \mathrm{~m} \mu$ of relatively high (ε ~ 8000) intensity. In acid solution, both isomers give spectra of the cis-type-a low
shoulder in the $300 \mathrm{~m} \mu$ region (ref. 1, Fig. 2, curve -.-.-). The spectra of the transisomers are interpreted as showing that the hindering effect of the 3-methyl substituent is so considerable that, despite the presence of the cis-aminomethyl group, it is easier for

$$
(X X V): R^{5}=M e
$$

$$
(X X V I I): R^{5}=M e
$$

$$
\text { (XXVIII): } R^{5}=H
$$

the phenyl than for the picolyl group to assume coplanarity with the propene system, and the former makes the greater contribution to the spectrum. The configurations of the isomers to which these spectra are referred are again confirmed by the order of elution and by cyclisation.

All the substituted alkenylamines described were prepared primarily for examination as antihistamines; many were found by Mr. A. F. Green of these Laboratories to show high activity, one of the most active ${ }^{3}$ being (XXVIc) (" Actidil '").

(XXIX)

(XXX)

Experimental

Ketones.-The following ketones, and those listed in Table 1, were prepared by the Mannich reaction as described in Part III: ${ }^{4}$ p-chloro- α-methyl- β-piperidinopropiophenone, m. p. $36-37^{\circ}$ [from light petroleum (b. p. 40-60 ${ }^{\circ}$] (Found: C, 67.6; H, 7.5; N, 5.3; Cl, 13.2. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ONCl}$ requires $\mathrm{C}, 67.8 ; \mathrm{H}, 7.5 ; \mathrm{N}, 5.3 ; \mathrm{Cl}, 13.4 \%$) [hydrochloride, m. p. $175-176^{\circ}$ (from ethanol) (Found: C, $59.4 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 4.4 ; \mathrm{Cl}, \mathbf{2 2 . 7} . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ONCl}, \mathrm{HCl}$ requires $\mathrm{C}, 59.6 ; \mathrm{H}, 6.9 ; \mathrm{N}, 4.6$; $\mathrm{Cl}, 23.5 \%)$]; α-methyl- β-pyrrolidinopropiophenone hydrochloride, m. p. $149-150^{\circ}$ [from acetoneethanol (3:1)] (Found: C, 65.6; H, 7.8; $\mathrm{N}, 5 \cdot 4 ; \mathrm{Cl}, 13.8 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ON}, \mathrm{HCl}$ requires $\mathrm{C}, 66 \cdot 3$; $\mathrm{H}, 7.9 ; \mathrm{N}, 5 \cdot 5 ; \mathrm{Cl}, 14.0 \%)$; p-chloro- α-methyl- β-pyrrolidinopropiophenone, b. p. $152-156 \% / 0 \cdot 1$ mm . (Found: C, $66.1 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 5 \cdot 5 ; \mathrm{Cl}, 13.9 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ONCl}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}, 7 \cdot 1 ; \mathrm{N}, 5 \cdot 6$; $\mathrm{Cl}, 14 \cdot 1 \%$).

4-Chloro- α-phenyl- β-pyrrolidinopropiophenone was prepared from benzyl p-chlorophenyl ketone ${ }^{5}$ by the method used by Mannich and Lammering ${ }^{6}$ for α-phenyl- β-piperidinopropiophenone, and after crystallisation from light petroleum (b. p. 60-80) had m. p. 97° (Found: $\mathrm{C}, 72 \cdot 7 ; \mathrm{H}, 6 \cdot 0 ; \mathrm{N}, 4 \cdot 9 ; \mathrm{Cl}, 11 \cdot 4 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ONCl}$ requires $\mathrm{C}, 72 \cdot 7 ; \mathrm{H}, 6 \cdot 4 ; \mathrm{N}, 4 \cdot 5 ; \mathrm{Cl}, 11 \cdot 3 \%$).
β-Piperidinobutyrophenone was prepared from crotonophenone ${ }^{7}$ by the method used by Stobbe and Rosenburg ${ }^{8}$ for β-phenyl- β-piperidinopropiophenone, and after crystallisation from light petroleum (b. p. $40-60^{\circ}$) had m. p. 38° (Found: $\mathrm{N}, 6 \cdot 0 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ON}$ requires N, 6.1\%).
β-Pyrrolidinobutyrophenone, similarly prepared, had b. p. $126-130^{\circ} / 0.4 \mathrm{~mm}$. (Found: $\mathrm{N}, 6.8 . \quad \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ON}$ requires $\mathrm{N}, 6.5 \%$).
${ }^{3}$ Green, Brit. J. Pharmacol., 1953, 8, 171.
${ }^{4}$ Adamson and Billinghurst, J., 1950, 1039.
5 Jenkins, J. Amer. Chem. Soc., 1934, 56, 682.
${ }^{6}$ Mannich and Lammering, Ber., 1922, 55, 3510.
${ }_{8}^{7}$ Dufraisse and Demontoignier, Bull. Soc. chim. France, 1927, 41, 843.
${ }^{8}$ Stobbe and Rosenburg, J. prakt. Chem., 1912, 86, 230.
p-Chlorocrotonophenone, prepared by the method used by Dufraisse and Demontoignier ${ }^{7}$ for crotonophenone, had b. p. $160-164{ }^{\circ} / 16 \mathrm{~mm}$. (Found: C, $66 \cdot 3 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{Cl}, 19 \cdot 9 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{OCl}$ requires $\mathrm{C}, 66 \cdot 6 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{Cl}, 19.7 \%$). β-Piperidino- p-chlorobutyrophenone was prepared from it by Stobbe and Rosenburg's method, ${ }^{8}$ but on attempted distillation it decomposed; it was therefore used for reaction with pyridyl-lithium (see below) without further purification.

2-Pyridyl-alcohols.-1-Phenyl-1-2'-pyridylethan-1-ol (XIIa), ${ }^{9} 1$-p-chlorophenyl-1-2'-pyridyl-ethan-1-ol (XII b), ${ }^{3}$ 1-phenyl-1-2'-pyridylpropan-1-ol (XIa), ${ }^{9}$ and the alcohols listed in Tables 2 and 3 were prepared from the corresponding ketones by reaction with 2 -pyridyl-lithium as described in Part III. ${ }^{4}$ The $2-3^{\prime}$-picolyl-alcohols (XXIX a and b) were similarly prepared, from 2 -bromo-3-picoline.

Dehydration of the Alcohols to the Mixed Isomeric Alkenylamines.-The alcohols listed in Tables 2 and 3 were, with exceptions noted below, dehydrated to the mixed isomeric alkenylamines by heating them in sulphuric acid ($85 \% \mathrm{v} / \mathrm{v}$) (10 parts) at 100° for $\frac{1}{4} \mathrm{hr}$. and working up as described previously. ${ }^{4}$ The oxalates of the mixed alkenylamines, prepared in hot ethanol by addition of $1 \cdot 1$ mol. of anhydrous oxalic acid, usually crystallised on cooling but occasionally separated only on the addition of ether or ethyl acetate.

Separation of the Diasteroisomers of 1-p-Chlorophenyl-1-2'-pyridyl-3-pyrrolidinobutan-1-ol (XXc).—The crude alcohol (59 g .), which did not solidify, was converted into its oxalate with oxalic acid (22.5 g .) in a small volume of ethanol. After 12 hr . the solid oxalate (25 g .) was filtered off and washed with ethanol and ether, then was converted into the base, which solidified and after crystallisation from light petroleum (b. p. 60-80) gave one isomer (9.0 g .) as prisms, m. p. 115-117 ${ }^{\circ}$. The mother-liquors from the oxalate preparations were evaporated to dryness. The oxalate was converted into the base, which was distilled (25 g. ; b. p. $170-$ $200^{\circ} / 0 \cdot 2 \mathrm{~mm}$.). This solidified and after recrystallisation from a small volume of light petroleum (b. p. $40-60^{\circ}$) gave the second isomer (14 g .) as prisms, m. p. $105-106^{\circ}$, depressed to m. p. $80-85^{\circ}$ on admixture with the first. Each isomer gave the same alkenylamine isomers on dehydration.

Separation of the Mixed Isomeric Alkenylamines (Table 4): cis- and trans-2-Methyl-1-phenyl-3-piperidino-1-2'-pyridylprop-1-ene (IIa) and (VIIa).-(i) Fractional crystallisation of the mixed isomeric oxalates from ethanol gave the sparingly soluble trans-oxalate as colourless needles, m. p. 175-176 ${ }^{\circ}$. The corresponding base had m. p. 85-86 ${ }^{\circ}$. The oxalate recovered from the mother-liquors was converted into the base, which solidified and after several crystallisations from light petroleum (b. p. $40-60^{\circ}$) gave pure cis-base as prisms, m. p. $100-102^{\circ}$, depressed on admixture with trans-base to $75-79^{\circ}$. The cis-oxalate formed prisms, m. p. 125°. (ii) Mixed isomeric bases (3 g .) were submitted to ion-exchange chromatography as described in Part V. ${ }^{1}$ The eluate was collected in fourteen fractions, all of which deposited crystalline material. Samples of solid were removed from every third fraction and dried on porous tile. The m. p.s and mixed m. p.s showed fractions $1-7$ to contain pure trans-isomer, m. p. 83-85 ${ }^{\circ}$, and fractions $10-14$ to contain pure cis-isomer, m. p. $98-101^{\circ}$.
cis- and trans-1-p-Chlorophenyl-2-methyl-3-piperdino-1-2'-pyridylprop-1-ene (IIb) and (VIIb).-The sparingly soluble trans-oxalate crystallised from ethanol as rods, m. p. 201-202 ${ }^{\circ}$. The oxalate recovered from the mother-liquors was converted into the base and submitted to ion-exchange chromatography, 42 fractions being collected. Although the ultraviolet absorption spectra of the two isomers determined photoelectrically were almost identical, the Holiday cam-plate ${ }^{10}$ of the trans-isomer showed well-defined fine structure, a feature present in fractions $1-10$ and absent in fractions 12-42. The latter were therefore collected and converted into cis-oxalate, plates (from ethanol-ether), m. p. $75-77^{\circ}$ depressed to $68-71^{\circ}$ on admixture with trans-oxalate.
cis- and trans-2-Methyl-1-phenyl-1-2'-pyridyl-3-pyrrolidinoprop-1-ene (IIc) and (VIIc).The sparingly soluble trans-oxalate crystallised from ethanol as needles, m. p. $158-159^{\circ}$. The corresponding base had m. p. 55°. The oxalate recovered from the mother-liquors was converted into the base and submitted to base-exchange chromatography, twenty-two fractions being collected all of which deposited crystals. Fractions 1-6 contained trans-isomer, m. p. $52-54^{\circ}$. Fractions $12-22$ had m. p.s in the range $65-70^{\circ}$, and were united and worked up to give pure cis-base, m. p. 69-70 ${ }^{\circ}$, depressed on admixture with trans-isomer to $45-47^{\circ}$.
cis- and trans-1-p-Chlorophenyl-2-methyl-1-2'-pyridyl-3-pyrrolidinoprop-1-ene (IId) and
${ }^{9}$ Tilford, Shelton, and Van Campen, jun., J. Amer. Chem. Soc., 1948, 70, 4004.
10 Holiday, J. Sci. Instr., 1937, 14, 166.
(VII d). -The mixed isomeric oxalates were crystallised several times from ethanol, to give trans-oxalate, needles, m. p. 216°. The mother-liquors were evaporated, the residual oxalate was dissolved in boiling ethyl acetate and filtered from a little trans-oxalate, and the ethyl acetate filtrate evaporated to small volume. On cooling, crystals separated and after crystallisation from ethanol-ether gave cis-oxalate, m. p. 134-135 . The isomers were also separated by base-exchange chromatography as described above for the piperidino-analogue.
cis- and trans-1-p-Chlorophenyl-2-phenyl-1-2'-pyridyl-3-pyrrolidinoprop-1-ene (IIIb) and (VIIIb).-(i) The alcohol (10 g .) was dehydrated by solution in 98% sulphuric acid (100 ml .) at room temperature for 3 hr . The mixed isomeric alkenylamines ($9 \cdot 2 \mathrm{~g}$.) solidified. They were converted into the oxalates, which were separated by fractional crystallisation from ethanol and ethanol-ether into the less soluble trans-oxalate, m. p. 151- 152°, and the more soluble cisoxalate, m. p. 147-148 ${ }^{\circ}$. The trans-base had m. p. 104- 105° and the cis-base had m. p. 110°, depressed on admixture with trans-isomer to $82-88^{\circ}$. (ii) The mixed bases were separated by base-exchange chromatography into forty fractions, from each of which crystals separated. On the basis of the m, p.s and mixed m. p.s, fractions 5- 22 were united and worked up to give trans-isomer, m. p. 44- 45°, and fractions $26-40$ similarly gave cis-base, m. p. 110°, depressed on admixture with the trans-isomer to $83-87^{\circ}$.

Isomeric 1:2-Diphenyl-3-piperidino-1-2'-pyridylprop-1-ene (IIIa) and (VIIIa).-The alcohol (20 g.), similarly dehydrated, gave mixed alkenylamines (18 g .) which partly solidified. The solid portion (11 g .), filtered from the oil, recrystallised from light petroleum (b. p. $40-60^{\circ}$) to give an isomer, m. p. $91-92^{\circ}$. Separation of the mixed isomers by base-exchange chromatography gave the same solid isomer, m. p. $91-92^{\circ}$, in the head fractions, and oil in the tail fractions, whence no solid hydrochloride or oxalate was obtained.
cis-1: 3-Diphenyl-3-piperidino-1-2'-pyridylprop-1-ene (X a). -The alcohol ($\mathbf{1 0} \mathrm{g}$.), similarly dehydrated, gave alkenylamine (8.4 g .), which slowly solidified. This was separated by ionexchange chromatography into 35 fractions, of similar spectrum ($\lambda_{\text {max }} .250 \mathrm{~m} \mu$). The material crystallised from light petroleum, to give the cis-base, m. p. 77-79 . From alcohol dehydrated in 85% sulphuric acid at 100° for $\frac{\mathrm{hr}}{}$. no water-insoluble product was recovered.
cis- and trans-1-(3-Methyl-2-pyridyl)-1-phenyl-3-pyrrolidinoprop-1-ene (XXX a) and (XXXIa).-The mixed oxalates were separated by fractional crystallisation from ethanol and ethanol-ether into the less soluble trans-oxalate, m. p. $158-160^{\circ}$, and the more soluble cisoxalate, prisms, m. p. 152°.
cis- and trans-1-p-Chlorophenyl-1-(3-methyl-2-pyridyl)-3-pyrrolidinoprop-1-ene (XXXb) and (XXXIb).-(i) The isomeric oxalates were separated by fractional crystallisation from ethanol and ethanol-ether into the less soluble cis-oxalate, plates, m. p. $175-176^{\circ}$, and the more soluble trans-oxalate, m. p. $140-141^{\circ}$. (ii) Mixed bases were submitted to base-exchange chromatography. The spectra of the fractions were not sufficiently dissimilar to define the transition from trans- to cis-isomer. However, on an arbitrary basis the first third of the fractions was worked up to give pure trans-oxalate, m. p. 140°, and the last third of the fractions to give pure $c i s$-oxalate, m. p. 175°.
cis- and trans-1-2'-Pyridyl-3-pyrrolidino-1-o-tolylprop-1-ene (XXVa) and (XXVIIa).The mixed isomeric bases were separated ${ }^{11}$ by base-exchange chromatography, controlled spectroscopically, the ratio of the optical densities at 290 and $270 \mathrm{~m} \mu$ being used (Figs. 2 and 3 of ref. 11 refer to the separation of this pair of isomers).
cis- and trans-1-(2 : 4-Dimethylphenyl)-1-2'-pyridyl-3-pyrrolidinoprop-1-ene (XXVb) and (XXVIIb), and cis- and trans-1-(2:5-Dimethylphenyl)-1-2'-pyridyl-3-pyrrolidinoprop-1-ene (XXVc) and (XXVIIc).-In each case the isomeric bases were separated by ion-exchange chromatography, controlled by the cam-plate method. ${ }^{10}$

The two examples lacking the tertiary amino-group [Table 4, (XIV) and (XV), a and b], the three γ-methyl-substituted examples [Table 4, (IV) and (IX), a, b, and c] and all the alkyl substituted examples in Table 5 not containing an o-methyl substituent were separated by base-exchange chromatography controlled by the ultraviolet absorption spectra of the fractions.

We thank Mr. P. R. W. Baker for the microanalyses and acknowledge gratefully the technical assistance of the late Mr. K. A. Chambers.

Wellcome Research Laboratories,

Langley Court, Beckenham, Kent. [Received, July 15th, 1957.]
${ }^{11}$ Jones in " Ion Exchange and Its Applications" (Report on Symposium), Soc. Chem. Ind., London, 1955, p. 164.

[^0]: * Throughout this paper " spectrum" is understood to mean ultraviolet absorption spectrum; sis and trans refer to the relation of the pyridyl and the (tertiary amino)methyl group.
 ${ }^{1}$ Adamson, Barrett, Billinghurst, and Jones, Part V, J., 1957, 2315.

[^1]: ${ }^{2}$ Everett and Jones, unpublished work.

